Data sheet acquired from Harris Semiconductor SCHS063B – Revised July 2003 # CD4094B Types ## **CMOS** 8-Stage Shift-and-Store **Bus Register** High-Voltage Types (20-Volt Rating) ■ CD4094B is an 8-stage serial shift register having a storage latch associated with each stage for strobing data from the serial input to parallel buffered 3-state outputs. The parallel outputs may be connected directly to common bus lines. Data is shifted on positive clock transitions. The data in each shift register stage is transferred to the storage register when the STROBE input is high. Data in the storage register appears at the outputs whenever the OUTPUT-ENABLE signal is high. Two serial outputs are available for cascading a number of CD4094B devices. Data is available at the OS serial output terminal on positive clock edges to allow for high-speed operation in cascaded systems in which the clock rise time is fast. The same serial information, available at the Ω'_S terminal on the next negative clock edge, provides a means for cascading CD4094B devices when the clock rise time is slow. The CD4094B types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (NSR suffix), and 16-lead thin shrink small-outline packages (PW and PWR suffixes). #### Features: - 3-state parallel outputs for connection to common bus - Separate serial outputs synchronous to both positive and negative clock edges for cascading - Medium speed operation 5 MHz at 10 V (typ.) - Standardized, symmetrical output characteristics - 100% tested for quiescent current at 20 V - Maximum input current of 1 μA at 18 V over full package temperature range; 100 nA at 18 V and 25°C - Noise margin (full package temperature range): 1 V at V_{DD} = 5 V 2 V : 2.5 V at V_{DD} = 15 V 2 V at V_{DD} = 10 V - 5-V, 10-V, and 15-V parametric ratings - Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices' #### Applications: - Serial-to-parallel data conversion - Remote control holding register - Dual-rank shift, hold, and bus applications Fig. 1 - Terminal assignment. #### MAXIMUM RATINGS, Absolute-Maximum Values: | | DC SUPPLY-VOLTAGE RANGE, (VDD) | |--------------------------------------|--| | | Voltages referenced to VSS Terminal) | | | INPUT VOLTAGE RANGE, ALL INPUTS | | ±10mA | DC INPUT CURRENT, ANY ONE INPUT | | | POWER DISSIPATION PER PACKAGE (PD): | | 500mW | For TA = -55°C to +100°C | | Derate Linearity at 12mW/OC to 200mW | For T _A = +100°C to +125°C | | , | DEVICE DISSIPATION PER OUTPUT TRANSISTOR | | Types) | FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package | | -55°C to +125°C | OPERATING-TEMPERATURE RANGE (TA) | | 65°C to +150°C | STORAGE TEMPERATURE HANGE (Talg) | | | LEAD TEMPERATURE (DURING SOLDERING): | | av | Al distance 1/16 ± 1/32 inch (1.59 ± 0.79mm) from case for 10s m | Fig. 3 - Timing diagram, #### RECOMMENDED OPERATING CONDITIONS at TA = 25°C, Except as Noted. For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges: | ALLA C. A. A.T.C. LIATIO | VDD | Life | | | |---|----------|------|---------|----------| | CHARACTERISTIC | (V) | MIN. | MAX. | UNITS | | Supply-Voltage Range (For TA=Full
Package-Temperature Range) | | 3 | 18 | v | | · . | 5 | 125 | - | | | Data Setup Time, ts | 10 | 55 | - | ns | | | 15 | 35 | - | | | | 5 | 200 | _ | | | Clock Pulse Width, tw | 10 | 100 | 1 + | ns | | · | 15 | 83 | - | | | | 5 | | 1.25 | | | Clock Input Frequency, fCL | 10 | dc | 2.5 | MHz | | | 15 | | 18 1.25 | | | Clock Input Rise or Fall time, | 5 | 1 | 15 | <u> </u> | | t _r CL, t _f CL:* | 10
15 | | 5 | μs | | | 5 | 200 | - | | | Strobe Pulse Width, tw | 10 | 80 | - | ns | | | 15 | 70 | - | | ^{*}If more than one unit is cascaded toCL (for Q5 only) should be made less than or equal to the sum of the fixed propagation delay at 50 pF and the transition time of the output driving stage for the estimated capacitive load. Fig. 5 - Minimum output low (sink) current characteristics. Fig. 8 — Clock-to-serial output Q_S propagation datasets C. delay vs C_L . CD4094B Types Fig. 6 - Typical output high (source) current characteristics. - Clock-to-serial output Q'S propagation delay vs C_L. | | | ***** | | | | | | |------|--------|--------|------|----|------------------|-----|--------------| | ÇL.ª | Output | Strobe | Dete | | raliei
riputs | | riel
puts | | ŲL. | Enable | 21700 | D#0# | Q1 | ON | O3- | 0.2 | | 7 | 0 | х | х | ОС | ос | Q7 | NC | | ~ | 0 | * | х | QC | ОC | NC | Q7 | | | . 1 | o | x | N€ | NC | 07 | NC | | | 1 | ı | 0 | 0 | ON-1 | 07 | NC | | | 1 | , | 7 | 1 | Q _{N-I} | 07 | NC | | ~ | 1 | , | 1 | NC | NC | NC | Q7 | TRUTH TARKE 4 - Lavel Change X = Don't Care NC = No Change Logic 1 ≠ High Logic 0 = Law OC = Open Circuit At the positive clock edge information in the 7th shift register stage is transferred to the 8th register stage and the OS output. Fig. 4 - Typical output low (sink) current characteristics. Fig. 7 - Minimum output high (source) current characterístics. Fig. 10 - Clock-to-parallel output propagation delay vs C_L . ### CD4094B Types #### STATIC ELECTRICAL CHARACTERISTICS | CHARACTER- | CONE | OITIO | is : | MI | LIMITS AT INDICATED TEMPERATURES (°C) | | | | | | | |--|----------|-------|------|-------|---------------------------------------|-------|--------|-------|-------------------|------|-------| | ISTIC | ٧o | VIN | VDD | · [| | | | +25 | | | UNITS | | .* | (8) | (V) | (8) | -55 | -40 | +85 | +125 | Min. | Тур. | Max. | | | Quiescent Device | | 0,5 | 5 | 5 | 5 | 150 | 150 | - | 0.04 | . 5 | | | Current, | | 0,10 | 10 | 10 | 10 | 300 | 300 | - | 0.04 | -10 | | | IDD Max. | - | 0,15 | 15 | 20 | 20 | 600 | 600 | - | 0.04 | 20 | .μΑ | | | | 0,20 | 20 | 100 | 100 | 3000 | 3000 | - ' | 0.08 | 100 | · | | Output Low | 0.4 | 0,5 | 5 | 0.64 | 0.61 | 0.42 | 0.36 | 0.51 | 1 | - | | | (Sink) Current | 0,5 | 0,10 | 10 | 1.6 | 1.5 | 1.1 | 0.9 | 1.3 | 2.6 | - | | | Output High
(Source)
Current, | 1.5 | 0,15 | 15 | 4.2 | 4 | 2.8 | 2,4 | 34 | 6.8 | - | | | | 4.6 | 0,5 | 5 | -0,64 | -0.61 | -0.42 | - D.36 | -0.51 | -1 | - | mA | | | 2.5 | 0,5 | 5 | -2 | -1.8 | -1.3 | - 1.15 | -1.6 | -3.2 | | | | | 9.5 | 0,10 | 10 | -1.6 | -1.5 | -1.1 | -0.9 | - 1.3 | -2.6 | | | | TOH WITT | 13.5 | 0,15 | 15 | -4.2 | -4 | -2.8 | -2.4 | -3.4 | -6.8 | | l | | Output Voltage: | · – | 0,5 | 5 | | 0 | .05 - | | - | o | 0.05 | | | Low-Level, | ^ | 0,10 | 10 | | 0 | .05 | | | 0 | 0.05 | 1 . | | VOL Max. | - | 0.15 | 15 | | ő | .05 | | - 1 | Ö | 0.05 | v | | Output Voltage: | - | 0,5 | 5 | | 4 | .95 | | 4.95 | 5 | - | ľ | | High Level, | | 0,10 | 10 | | 9 | .95 | | 9.95 | 10 | - | | | VOH Min. | _ | 0,15 | 15 | | 14 | 1.95 | | 14.95 | 15 | - | i | | Input Low | 0.5, 4.5 | - | 5 | | 1 | .5 | | | | 1.5 | | | Voltage, | 1, 9 | _ | 10 | | | 3 | | _ | - | 3 | | | V _{IL} Max. | 1.5,13.5 | _ | 15 | | | 4 | | _ | | 4 | i | | Input High | 0.5, 4.5 | ·- | 5 | | ; | 3.5 | | 3.5 | _ | | V | | Voltage, | 1, 9 | | 10 | | | 7 | | -7 | | | | | VIH Min. | 1.5,13.5 | - | 15 | | | 11 | | 11 | _ | _ | | | Input Current
I(N Max. | - | 0,18 | 18 | ±0.1 | ±0.1 | ±1 | ±1 | - | ±10 ⁻⁵ | ±0.1 | μΑ | | 3-State Output
Leakage Current
FOUT Max. | 0,18 | 0,18 | 18 | ±0.4 | ±0.4 | ±12 | ±12 | | +10- 4 | ±0.4 | μΑ | Fig. 14 - Remote control holding register. Fig. 11 - Strobe-to-parallel output propagation delay vs C_L. Fig. 12 — Output enable-to-parallel output propagation delay vs C_L . Fig. 13 - Typical transition time vs. load capacitance. Fig. 15 — Typical meximum-clock-frequency vs. supply voltage. #### **DYNAMIC ELECTRICAL CHARACTERISTICS** At T_A =25°C; Input t_F , t_f = 20 ns, C_L = 50 pF, R_L = 200 k Ω | CHARACTERISTIC | VDD | | UNITS | | | |--|---------|------------|-------|------------|-------------| | | (V) | MIN. | TYP. | MAX. | 0 | | Propagation Delay Time, | | 1 | 1 | 1 | | | tPHL, tPLH | 5 | | 300 | coo | <u> </u> | | Clock to Social Output O. | 10 | - | 125 | 600
250 | | | Clock to Serial Output Q _S | 15 | _ | 95 | 190 | ns | | | 5 | | 230 | 460 | | | Clock to Serial Output Q'S | 10 | _ | 110 | 220 | l ns | | Sister to serial parper 45 | 15 | - | 75 | 150 | ,,, | | | 5 | | 420 | 840 | | | Clock to Parallel Output | 10 | l <u>-</u> | 195 | 390 | ns | | Clock to Paramer Output | 15 | _ | 135 | 270 | | | | 5 | | 290 | 580 | | | Strobe to Parallel Output | 10 | _ | 145 | 290 | ns | | | 15 | | 100 | 200 | | | Output Enable to Parallel | 5 | _ | 140 | 280 | | | Output: | 10 | _ | 60 | 120 | ns | | t _{PHZ} , t _{PZH} | 15 | _ | 45 | 90 | | | | 5 | _ | 100 | 200 | | | tPLZ. tPZL | 10 | _ | 50 | 100 | ns | | | 15 | | 40 | 80 | | | Minimum Strobe Pulse . | 5 | _ | 100 | 200 | | | Width, tw | 10 | - | . 40 | 80 | ns | | | 15 | _ | 35 | 70 | | | Minimum Clock Pulse | 5 | _ | 100 | 200 | - | | Width, tw | 10 | - | 50 | 100 | ΠS | | | 15 | - | 40 | 83 | | | Minimum Data Setup | 5 | - | 60 | 125 | | | Time, ts | 10 | - | 30 | 55 | ns | | | 15 | | 20 | 35 | | | Transition Time: | 5 | - | 100 | 200 | | | THL. TLH | 10 | - | 50 | 100 | D\$ | | | 15 | _ | 40 | 80 | | | Maximum Clock Input Rise | 5
10 | 15
5 | | | | | or Fall Time, t _f CL, t _f CL | 15 | _ 5 | | - | μς | | Maximum Clock Input | 5 | 1.25 | 2.5 | | | | Frequency, for | 10 | 2.5 | 5 | | MHz | | | 15 | 3 | 6 | | | | Input Capacitance C _{IN} | l _ | l _ | 5 | 7.5 | pF | | (Any Input) | 1 | : | " | | þΓ | Fig. 16 – Dynamic power dissipation vs input clock frequency. Fig. 17 — Quiescent device current test circuit. Fig. 18 - Input voltage test circuit. Fig. 19 - Input current test circuit. Dimensions and Pad Layout for CD4094B Chip. Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils $(10^{-3} \, \text{inch})$. www.ti.com 14-Aug-2021 #### **PACKAGING INFORMATION** | Orderable Device | Status (1) | Package Type | Package
Drawing | | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|------------|--------------|--------------------|----|----------------|---------------------|-------------------------------|--------------------|--------------|-------------------------|---------| | 7702501EA | ACTIVE | CDIP | J | 16 | 1 | Non-RoHS
& Green | SNPB | N / A for Pkg Type | -55 to 125 | 7702501EA
CD4094BF3A | Samples | | CD4094BE | ACTIVE | PDIP | N | 16 | 25 | RoHS & Green | NIPDAU | N / A for Pkg Type | -55 to 125 | CD4094BE | Samples | | CD4094BEE4 | ACTIVE | PDIP | N | 16 | 25 | RoHS & Green | NIPDAU | N / A for Pkg Type | -55 to 125 | CD4094BE | Samples | | CD4094BF | ACTIVE | CDIP | J | 16 | 1 | Non-RoHS
& Green | SNPB | N / A for Pkg Type | -55 to 125 | CD4094BF | Samples | | CD4094BF3A | ACTIVE | CDIP | J | 16 | 1 | Non-RoHS
& Green | SNPB | N / A for Pkg Type | -55 to 125 | 7702501EA
CD4094BF3A | Samples | | CD4094BNSR | ACTIVE | SO | NS | 16 | 2000 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CD4094B | Samples | | CD4094BPW | ACTIVE | TSSOP | PW | 16 | 90 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CM094B | Samples | | CD4094BPWR | ACTIVE | TSSOP | PW | 16 | 2000 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CM094B | Samples | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. **Green:** TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. ⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. ⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. ### PACKAGE OPTION ADDENDUM www.ti.com 14-Aug-2021 (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF CD4094B, CD4094B-MIL: Catalog: CD4094B Military: CD4094B-MIL NOTE: Qualified Version Definitions: - Catalog TI's standard catalog product - Military QML certified for Military and Defense Applications ### PACKAGE MATERIALS INFORMATION www.ti.com 17-Dec-2020 ### TAPE AND REEL INFORMATION | | Dimension designed to accommodate the component width | |----|---| | B0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | CD4094BNSR | SO | NS | 16 | 2000 | 330.0 | 16.4 | 8.2 | 10.5 | 2.5 | 12.0 | 16.0 | Q1 | | CD4094BPWR | TSSOP | PW | 16 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | ## **PACKAGE MATERIALS INFORMATION** www.ti.com 17-Dec-2020 #### *All dimensions are nominal | Device | Package Type | Package Type Package Drawing | | ge Type Package Drawing Pir | | SPQ | Length (mm) | Width (mm) | Height (mm) | |------------|--------------|------------------------------|----|-----------------------------|-------|-------|-------------|------------|-------------| | CD4094BNSR | SO | NS | 16 | 2000 | 367.0 | 367.0 | 38.0 | | | | CD4094BPWR | TSSOP | PW | 16 | 2000 | 853.0 | 449.0 | 35.0 | | | SMALL OUTLINE PACKAGE - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. - 5. Reference JEDEC registration MO-153. SMALL OUTLINE PACKAGE NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. SMALL OUTLINE PACKAGE NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. ### **MECHANICAL DATA** ### NS (R-PDSO-G**) ## 14-PINS SHOWN ### PLASTIC SMALL-OUTLINE PACKAGE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15. #### 14 LEADS SHOWN - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package is hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. - E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20. ## N (R-PDIP-T**) ### PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. ### **IMPORTANT NOTICE AND DISCLAIMER** TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated